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Abstract—We analyze how both traditional data center inte-
gration and dispatchable load integration affect grid dynamics
and efficiency. Our analysis uses parallel optimization solvers,
1000’s of renewable generation scenarios, and running thousands
of simulations. These enable us to perform sophisticated analysis,
including rigorous grid performance modeling. For example, we
evaluate scenarios of optimal placement of dispatchable loads in
a realistic power grid system and assesses performance in the
face of myriad wind and load scenarios.

Our analysis reveals that significant spillage and stranded
power exists in current power grids. Adding data centers with
collocating renewable generation (wind farms) can be harmful
to RPS goals, increases both stranded power and thermal gener-
ation. In contrast, adding data centers that are dispatchable by
the power grid both reduces stranded power and improves both
grid cost and stability, even at high RPS. In short, dispatchable
loads can enable grid scaling to high RPS. These dispatchable
computing loads achieve duty factors of 60-80%.

Index Terms—renewable power, green computing, power grid,
energy markets, renewable portfolio standard, cloud computing

I. INTRODUCTION

Over the past two decades, a growing consensus has

emerged that the earth’s climate is warming at a significant

rate with anthropogenic carbon an important contributor [1],

[2]. In response, there are growing array of efforts worldwide

to reduce the amount of carbon being released into the atmo-

sphere [3], [4]. One area of particular interest is increasing

carbon emissions due to use of information and computing

technologies (ICT), which were recently estimated at 2% of

global emissions [5] and are among the most rapidly growing.

In fact, recent estimates suggest that by 2020, ICT will account

for 4% of carbon emissions [5]–[7].

Recently, the rise of cloud computing has raised concerns

about carbon emissions from data centers [8]. These concerns

have spawned research on how to increase data-center energy

efficiency [9], [10] and exploit renewable power to supply

data-center loads [11]–[14]. A recent strategy pursued by sev-

eral “hyperscaler” internet companies has been the purchase of

wind-power offsets as part of “long-term purchase” contracts

[15]. Another well-studied research topic is the optimization of

data-center site selection based on cost and on exploitation of
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renewable power [16], [17]. To our knowledge, all such studies

consider benefits and costs from the perspective of the cloud

computing operator, who seeks to maximize revenue, reduce

total-cost-of-ownership (TCO), and maintain high data-center

availability. In this paper we take an alternative approach

and consider the impact of the addition of new data centers

and collocated renewables on the resilience, efficiency, and

flexibility of the power grid.
Ambitious “renewable portfolio standards” (RPS) goals for

renewable power as a fraction of overall power are currently

being adopted. U.S. states across the Midwest included in the

Mid-continent Independent System Operator (MISO) system

have adopted standards ranging from 25% (2015) in Illinois to

25 ∼ 31% (2025) in Minnesota. California has already reached

a 20% renewable mix in 2010 and is on track to reach its 33%

target for 2020 [18] for wind and solar power. In September

2015, California adopted an RPS goal of 50% renewable by

2030 [19]. Other state goals include 50% by 2030 in New

York, and 10 GW by 2025 in Texas.
Obama’s “Clean Power Plan,” issued August 2015, calls for

a national 32% reduction in electric power carbon emissions

by 2030, with renewable power as a critical element. And,

the U.S. Department of Energy released a landmark report,

“Wind Vision 2015,” that describes how the United States can

achieve a 35% RPS for wind alone by 2050, a big jump from

a combined solar and wind RPS of 5.2% in 2014 [20]. In

practical terms, this means that regions with relatively more

wind resources, such as Texas, can achieve an RPS goal

of over 50% by 2050. These ambitious and transformative

goals pose serious challenges for the power grid, including its

ability to achieve “merit order” and fairness while maintaining

system efficiency and resiliency. In particular, the fluctuation

of renewable wind and solar power generation can create

periods with large amounts of stranded power.
Motivated by the dual goals of achieving high RPS in the

power grid and supporting large-scale computing, we address

the following questions:

1) What impact will the growth of data-center installations

have on the future power grid?

2) Should renewables be collocated next to data centers?

3) Can we simultaneously enable scalable computing and

greater renewable penetration?

To explore these questions, we developed a computational

framework that uses a detailed power grid system model

and cutting-edge, parallel optimization solvers. We use these

capabilities to explore a range of scenarios and characterize the

impact of increasing RPS levels and data-center deployments
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on key power grid metrics such as system cost, stranded

power, and data-center duty factors. To model the growth of

cloud computing, we consider the addition of twenty 200-

MW data centers to the power grid in locations chosen

for external purposes (e.g. optimized for cloud computing

interests). Next, we consider the collocation of renewables

with those data centers. Subsequently, we present a different

model, introducing a new type of computing that is flexible and

forms a dispatchable load. Such dispatchable loads can enable

grid stability at higher RPS levels and also greater efficiency.

We consider optimizing the location of these dispatchable

loads and the resulting impact on power grid efficiency. Our

findings include:

• Significant spillage and stranded power exists in current

power grids, and this quantity increases as we scale to

higher RPS levels.

• Collocating wind farms and data centers naively can be

harmful to RPS goals, increasing stranded power and

thermal generation.

• The use of dispatchable computing loads reduces stranded

power and enables scaling to higher RPS levels by

increasing price stability.

• Optimizing placement of dispatchable loads decreases

overall system cost and achieves data center duty factors

of 60-80%.

The rest of the paper is organized as follows. In Section

II we discuss the issue of stranded power and introduce the

concept of dispatchable computing loads. Section III outlines

our optimization models, followed by experiments in Section

IV. In Section VI, we summarize our results.

II. STRANDED POWER AND DISPATCHABLE COMPUTING

In this section we describe the idea and definition of both

stranded power and a dispatchable load.

A. Stranded Power

Power system operators must balance power flow across

each bus in the power grid network. Generators offer their

generation capability to the grid in real time (every 5 to 12

minutes), and the grid dispatches generation based on the

demand and transmission. However, intrinsic variability of re-

newable generation (wind, solar, etc.) creates major challenges

for power dispatch. Despite best efforts to match generation

and demand, in the process of ensuring reliable power, there

can be oversupply and transmission congestion that prevents

generated power from reaching loads. Power grids call this

excess power spillage, “curtailment,” or “down dispatching.”

Figure 1 shows the monthly wind generation and down-

dispatched wind power (spillage) of the MISO system. Almost

7% of wind generation is curtailed because of transmission

congestion. The total down-dispatched power of MISO for

2014 was about 2.2 terawatt-hours, corresponding to a 183

MW sustained rate. Comparable waste also exists in other

independent system operators (ISO), including the Eastern

Region Coordinating District of Texas (ERCOT), California

ISO (CAISO) [21], and many European countries such as
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Fig. 1. Wind generation and down-dispatching (spillage) of MISO in 2014.

Denmark, Germany, Ireland, and Italy [22]. The amount of

waste is projected to increase with higher RPS levels [19].

Modern energy markets dispatch generation by assigning

locational marginal prices (LMP) that vary across generation

sites, grid nodes, and time intervals. In situations of oversupply

or transmission congestion, power prices can be low or even

negative, causing power generators to dump power (spillage)

or deliver it, and pay the grid to take it1 Consequently, spillage

can be significantly less than total uneconomic generation.

We define stranded power as all offered generation with

no economic value, thus including both spillage and delivered

power with zero or negative LMP. Figure 2 presents MISO’s

stranded power in 2014, breaking it down by month and type.

It also compares the average stranded power from wind and

non-wind generation. Overall stranded wind power, the sum

of wind spillage and noneconomic wind dispatch (LMP≤0),

is about 7.7 TWh for 2014. Interestingly, non-wind sites,

mostly thermal generators, have 10.1 TWh of stranded power.

However, as fraction, because 90% of grid power is thermal,

approximately 8-times less stranded power by percentage.
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Fig. 2. MISO stranded power (wind) vs. stranded power (nonwind) in 2014.

B. Dispatchable Loads

We define dispatchable loads as adjustable demands that

are dispatched in real-time by the power grid. Adjustable at

every dispatch interval, dispatchable loads are an ideal form of

demand response. Their flexibility makes them a good match

to reduce congestion and stranded power, particularly due to

generation variability. Key properties of dispatchable loads

include:

• Dispatchable loads consumption can be increased to some

limit under grid control.

• Dispatchable loads consumption can be decreased to zero

under grid control.

• Grid control can be exercised at the dispatch interval

(effectively instantly).

1Delivering power into the grid can be tied to “production tax credits”, a
financial incentive to sell power to the grid even at negative price.
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We consider one possible implementation of dispatchable

loads: intermittent computing resources. Because computing

operates on much shorter time scales, it has the potential to be

agile, yet still productive. We call such intermittent computing

resources zero-carbon cloud (ZCCloud) [23], [24], and have

described and analyzed several possible models. For example,

ZCCloud could be computing hardware deployed in shipping

containers and directly connected to a wind farm or at a

key transmission bottleneck. ZCClouds can transform stranded

power into computing power with very short latency (in

seconds) and can be easily turned on or shut down according

to stranded power availability. Possible uses include data-

center workloads such big data analysis, machine learning,

or high-performance computing. The uptime and capabilities

of intermittent computing resources deployed as dispatchable

loads are determined by the quanity and temporal distribution

of stranded power.

The idea of intermittent (or “volatile”) computing resources

is of growing interest. Cloud providers have begun to pro-

vide unreliable/revokable resources including Amazon’s spot

instances [25] and Google’s preemptible VM Instance [26].

Several studies propose methods make such resources useful

for high performance computing and more advanced cloud

services [27]. We believe there is a broad application for

intermittent computing resources.

Of course, many other realizations of dispatchable loads

are possible, including energy storage. The two important

differences between our dispatchable loads and energy storage

are infinite capacity (our dispatchable loads can run forever

without filling up) and externally subsidized economics (ser-

vices generated by our dispatchable loads can defray their cost

in part or in full).

III. OPTIMIZATION MODELS

In this section we present two optimization models in order

to assess the benefits of dispatchable loads. We also present

various performance metrics for our analysis.

A. Economic Dispatch Model

To assess the economic benefits of dispatchable computing

loads, we use the following economic dispatch (ED) model:

zED :=

min
∑

t∈T





∑

i∈G

Cipit +
∑

j∈D

Cd
j djt +

∑

i∈I

Cm
i mit

+
∑

i∈W

Cw
i wit +

∑

i∈R

Cr
i rit

)

(1a)

s.t.
∑

l∈L+
n

flt −
∑

l∈L−

n

flt +
∑

i∈Gn

pit +
∑

i∈In

(Mit −mit)

+
∑

i∈Wn

(Wit − wit) +
∑

i∈Rn

(Rit − rit)

=
∑

j∈Dn

(Djt − djt), (λnt), ∀n ∈ N , t ∈ T ,

(1b)

flt = Bl(θnt − θmt), ∀l = (m,n) ∈ L, t ∈ T ,
(1c)

− RDi ≤ pit − pi,t−1 ≤ RUi, ∀i ∈ G, t ∈ T ,
(1d)

− Fmax
l ≤ flt ≤ Fmax

l , ∀l ∈ L, t ∈ T , (1e)

Θmin
n ≤ θnt ≤ Θmax

n ∀n ∈ N , t ∈ T , (1f)

0 ≤ pit ≤ Pmax
i , ∀i ∈ G, t ∈ T , (1g)

0 ≤ djt ≤ Djt, ∀j ∈ D, t ∈ T , (1h)

0 ≤ mit ≤ Mjt, ∀i ∈ I, t ∈ T , (1i)

0 ≤ wit ≤ Wjt, ∀i ∈ W , t ∈ T , (1j)

0 ≤ rit ≤ Rjt, ∀i ∈ R, t ∈ T . (1k)

Note that power is supplied from imports, (nonwind) renew-

ables (e.g., bio-, hydro- and geo-) and wind generations as well

as from conventional thermal generation units. Considering

imports and nonwind renewables (we refer to these simply as

renewables in the following discussion) is important because

they account for a significant portion of the power genera-

tion in some systems. In the CAISO system, for instance,

imports and renewables account for 27% and 25% of the

total system generation, respectively.2 Moreover, the analysis

that we present later indicates that dispatchable loads can

reduce spillage of imports and nonwind renewables. In the

presented model we assume that import as well as renewable

and wind power suppliers are not competitive agents in the

market (they are high-priority suppliers). Consequently, their

supplies are considered as negative demands for which we seek

to minimize spillages at costs Cm
i , Cw

i , and Cr
i , respectively.

We also allow for load shedding at certain nodes at cost Cd
j ,

which is set to the value of lost load (VOLL).

The objective function (1a) is to minimize the sum of the

following items:

• Supply cost from conventional thermal generators

• Cost of the load shedding

• Cost of the import spillage

• Cost of the wind power spillage

• Cost of the nonwind renewable spillage

The objective function represents the total dispatch cost. Note

that this objective can also be interpreted as maximizing social

welfare, as defined in electricity market clearing models (e.g.,

[28]). In such formulations the objective function is

max
∑

t∈T





∑

j∈D

[Djt − djt]−
∑

i∈G

Cipit −
∑

i∈I

Cm
i mit

−
∑

i∈W

Cw
i wit −

∑

i∈R

Cr
i rit

)

. (2)

Here, djt is the unserved load (load shedding), and Djt are

(constant) requested loads. Consequently, Djt − djt is the

served load that we seek to maximize. Because Djt is a

constant, this can be eliminated from the objective. Thus this

problem seeks to minimize djt, as in (1).

2http://content.caiso.com/green/renewrpt/20160201
DailyRenewablesWatch.txt
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Equation (1b) enforces the power flow balance of the

network. Equation (1c) represents a lossless model of power

flow equations that determines the power flow of line l by the

phase angle difference between two buses m and n. Equation

(1d) represents the ramping constraints limiting the rate of

change of generation levels. Constraints (1e) and (1f) represent

the transmission line capacity and the feasible phase angle

range, respectively. Constraint (1g) represents the generation

capacity, and constraint (1h) is a bound for the unserved load.

Constraints (1i)-(1k) bounds spillages of imports, wind, and

renewable supply, respectively

B. Optimal Placement of Dispatchable Loads

We extend the proposed ED model to account for optimal

placement (OP) of dispatchable loads at locations minimizing

the expected total dispatch cost. The OP model is cast as a two-

stage stochastic integer programming problem of the following

form:

zOP :=

min
∑

s∈S

πs

∑

t∈T





∑

i∈G

Cipits +
∑

j∈D

Cd
j djts

+
∑

i∈I

Cm
i mits +

∑

i∈W

Cw
i wits +

∑

i∈R

Cr
i rits

+
∑

n∈N

Cu
n [Uxn − unts]

)

(3a)

s.t.
∑

n∈N

xn ≤ K, (3b)

0 ≤ unts ≤ Uxn, ∀n ∈ N , t ∈ T , s ∈ S, (3c)
∑

l∈L+
n

flts −
∑

l∈L−

n

flts +
∑

i∈Gn

pits

+
∑

i∈In

(Mit −mits) +
∑

i∈Wn

(Wits − wits)

+
∑

i∈Rn

(Rit − rits)−
∑

t∈T

unts

=
∑

j∈Dn

(Djt − djts), ∀n ∈ N , t ∈ T , s ∈ S, (3d)

flts = Bl(θnts − θmts),

∀l = (m,n) ∈ L, t ∈ T , s ∈ S, (3e)

−RDi ≤ pits − pi,t−1,s ≤ RUi,

∀i ∈ G, t ∈ T , s ∈ S, (3f)

− Fmax
l ≤ flts ≤ Fmax

l , ∀l ∈ L, t ∈ T , s ∈ S,
(3g)

Θmin
n ≤ θnts ≤ Θmax

n ∀n ∈ N , t ∈ T , s ∈ S, (3h)

0 ≤ pits ≤ Pmax
i , ∀i ∈ G, t ∈ T , s ∈ S, (3i)

0 ≤ djts ≤ Djt, ∀j ∈ D, t ∈ T , s ∈ S, (3j)

0 ≤ mits ≤ Mjt, ∀i ∈ I, t ∈ T , s ∈ S, (3k)

0 ≤ wits ≤ Wjt, ∀i ∈ W , t ∈ T , s ∈ S, (3l)

0 ≤ rits ≤ Rjt, ∀i ∈ R, t ∈ T , s ∈ S, (3m)

xn ≥ 0, integer ∀n ∈ N . (3n)

The objective function (3a) is to minimize the expected

total dispatch costs where uncertainty arises from wind supply

scenarios. The here-and-now decision is to determine the

number and locations of dispatchable loads to be installed. The

second-stage decisions involve flows, angles, supply, loads,

and spillages for each scenario s ∈ S. Equations (3b) and

(3c) are budget and capacity constraints for dispatchable loads,

respectively. The capacity of a dispatchable load is given by

U . We note that the objective (3a) and constraints (3d) include

dispatchable loads.

C. Performance Metrics

We define the metrics of interest for our analysis. The

dispatch cost and the expected dispatch cost are given by zED

and zOP , respectively. The ED supply cost and the OP supply

cost are defined respectively as

zED −
∑

j∈D

∑

t∈T

Cd
j djt (4a)

and

zOP −
∑

t∈T

∑

s∈S

πs





∑

j∈D

Cd
j djts −

∑

n∈N

Cu
n [Uxn − unts]



 .

(4b)

Here, the second term in both (4a) and (4b) is the load

shedding cost. The total amount of load shedding and the

expected amount of load shedding are defined respectively as
∑

j∈D

∑

t∈T

djts (5a)

and
∑

j∈D

∑

t∈T

∑

s∈S

πsdjts. (5b)

The total amount of power supplied (produced) is defined as

PSupply
ED :=

∑

t∈T

(

∑

i∈G

pit +
∑

i∈I

Mit +
∑

i∈W

Wit +
∑

i∈R

Rit

)

.

(6)

The total amount of power spillage is defined as

PSpillage
ED :=

∑

t∈T

(

∑

i∈I

mit +
∑

i∈W

wit +
∑

i∈R

rit

)

. (7)

Consequently, the total amount of power dispatched (absorbed

into the system) is given by

PDispatch
ED := PSupply

ED − PSpillage
ED . (8)

We differentiate the total power absorbed at positive LMPs

and nonpositive LMPs. To do so, we define N+
t := {n ∈ N :

λnt > 0}, where λnt is an optimal dual variable value of the

ED model. The total power absorbed at positive LMPs and

nonpositive LMPs for ED is given respectively by

PLMP>0

ED :=
∑

t∈T

∑

n∈N+
t

[

∑

i∈Gn

pit +
∑

i∈In

(Mit −mit)

+
∑

i∈Wn

(Wit − wit) +
∑

i∈Rn

(Rit − rit)

]

(9)
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TABLE I
AVERAGE LOAD, IMPORTS, RENEWABLE SUPPLY, AND NET LOAD (MW)

Load Imports Renewable Net Load
SpringWD 26,868 7,478 6,681 12,708
SpringWE 23,980 7,608 6,998 9,373
SummerWD 31,089 7,678 6,672 16,737
SummerWE 28,184 7,400 7,124 13,659
FallWD 28,055 7,675 6,657 13,722
FallWE 25,186 7,108 7,065 11,012
WinterWD 26,352 7,663 6,634 12,054
WinterWE 23,708 6,800 5,581 11,399

and

PLMP≤0

ED := PDispatch
ED − PLMP>0

ED . (10)

We define stranded power as

PLMP≤0

ED + PSpillage
ED . (11)

Wind penetration levels (%) are defined as
∑

i∈W

∑

t∈T Wit
∑

j∈D

∑

t∈T Djt

× 100. (12)

The RPS is defined by the ratio of the renewable power

absorbed to the total power loads,
∑

t∈T

[
∑

i∈R(Rit − rit) +
∑

i∈W(Wit − wit)
]

∑

j∈D

∑

t∈T Djt

× 100.

(13)

For the OP model the metrics are defined for each s ∈ S from

which we compute expected values.

The duty factor (%) for the dispatchable computing loads

is defined as the ratio of the total amount of dispatchable load

served to the requested capacity:
∑

n∈N

∑

t∈T unts

|T |
∑

n∈N Uxn

. (14)

We note that duty factors can be used as a metric that

represents profitability for the data center owners.

IV. COMPUTATIONAL RESULTS AND ANALYSES

We study a test system of CAISO interconnected with

the Western Electricity Coordinating Council (WECC). The

system consists of 225 buses, 375 transmission lines, 130

generation units, 40 loads, and 5 wind power generation units.

We consider a 24-hour horizon with hourly intervals. We use

network topology, import supply, renewables, wind produc-

tion, and load data from [29]. Imports flow into the system

through 5 boundary buses. Renewable power is generated from

biogas, hydrothermal, and geothermal generators at 11 buses.

For this system, the generation capacity that excludes imports,

renewables, and wind power is 31.2 GW. We consider load

profiles for 8 day types: spring, summer, fall, and winter; as

well as weekday (WD) and weekend (WE). Table I reports

average loads, imports, renewables, and net loads (load minus

imports, renewables, and wind supply). Figure 3 shows the net

loads for the different day types.

For each day type, we use the 1,000 specific wind power

production scenarios taken from [29] where wind power
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Fig. 4. Wind power supply (GW) at 15% level during summer day.

scenarios are 15% of load, representing the 2020 RPS target of

California [29] as illustrated in Figure 4. We plot 100 scenarios

for wind power (grey lines) to highlight the variability, and also

plot the corresponding mean (blue line). While our simulations

use 1000 scenarios, we plot only 100 scenarios for readability.

The same wind scenarios for weekdays and weekends of

the same season. We explore a range of additional wind

penetration levels 5%, 15%, 30%, and 50% of load,

As is typical due to longer-term commitments and the goal

a reducing carbon emissions, we assume that imports and

renewables are higher priority (i.e., nondispatchable) but can

be spilled, if necessary, at a cost of 1,000 and 2,000 $/MWh,

respectively. We use a load shedding cost (VOLL) of 1,000

$/MWh and a wind spillage cost of 100 $/MWh. These values

or higher are typical of ISO settings, and are chosen to impose

a relative priority on different products.

We analyze the following cases:

• Case 1: Base, WECC configuration as described above.

• Case 2: Case 1 plus 20 additional 200 MW data centers

that total 4 GW additional load (96 GWh per day). Each

data center is a continuous 200 MW load and subject

to VOLL penalties. Data-center locations were chosen

arbitrarily to reflect choices driven by external business
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considerations (e.g., networking, proximity to customers,

and geographic diversity).

• Case 3: Case 2 plus collocated wind farms at each data

center, sized match total load over 12 months. Due to

typical wind capacity factor of 30%, the peak generation

of these farms is typically 3x greater than the 200 MW

data center load.

• Case 4: Case 1 plus 20 additional 200 MW data centers

operated as dispatchable loads. The ISO determines the

power consumption of each dispatchable load each hour

at no penalty cost. The data centers are positioned op-

timally to minimize overall system dispatch cost across

all wind and load scenarios by solving the OP model (3).

Note that Case 4 is an extension of Case 1, not Case 2

or 3.

In Cases 1, 2, and 3, we solve the ED model (1), minimizing

the total dispatch cost for all wind and load scenarios as we

increase wind levels. In Case 4, the ED is subsumed within

the OP model, and the solution minimizes the same metrics

in addition to optimal placement of dispatchable loads.
The cases vary in total generation and load. To make the

clearest comparison, we make comparisons reporting percent-

ages relative to Case 1 (i.e., the base system). For example, the

loads in Case 2 and 3 are higher due to addition of data centers,

and Case 4 falls in the middle due to its variable dispatch.

We use consistent wind penetration numbers, ignoring the

additional wind generation in Case 3. The simple treatment of

loads affects “real” wind penetration only 1 ∼ 6%, far smaller

than resulting spillage. Excluding data center wind power

in Case 3, produces conservative estimates of spillage and

stranded power in that case, painting it in the most favorable

light.
Figure 5 presents a node-edge network representation of

the test system with the 20 data-center locations of Case

2. We note that this network does not represent the actual

geographical locations of the actual buses and the lines of

the system. The network was generated by using the gephi

package [30].
The network system under study is large, and we evaluate a

large number of scenarios and system configurations. Thus,

the analysis performed is computationally intensive. Cases

1, 2 and 3 solve the ED model (1) for 1,000 wind-power

scenarios and for each day type and season. These represent a

total of 32,008 linear programs (LPs) for each case. Each LP

has 19,008 continuous variables and 17,544 linear constraints.

Case 4 solves the OP model (3) including all the 1,000

wind scenarios; each OP instance is solved for the different

day type and season and different wind power levels. We

thus solve a total of 24 large-scale stochastic mixed-integer

programs (for nonzero wind levels) and 8 deterministic mixed-

integer programs (at zero wind level). Each OP model has

225 general integer variables, 24,408,000 continuous variables,

and 22,944,001 constraints. Each deterministic mixed-integer

program has 225 general integer variables, 24,408 continuous

variables, and 22,945 constraints. The EDs are implemented

in JuMP [31] and the stochastic ones in StochJuMP [32]. ED

is solved with CPLEX 12.6.1, and OP is solved by using the

parallel Benders decomposition implementation of the open-
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Fig. 5. Node-edge network representation of test system (Cases 2 and 3). The
buses with thermal generation units, loads, both generation units and loads,
wind generation units, and data centers are labeled as G, L, G/L, W and D,
respectively.

source package DSP [33]. All computations were performed

on Blues, a 310-node computing cluster at Argonne National

Laboratory. Each computing node has two octo-core 2.6 GHz

Xeon processors and 64 GB of RAM. Over 50,000 core-

hours (six core years) of computing time were required for

our analysis.

The cases studied reveal important trends that we summarize

below. We then present numerical results to illustrate these

trends.

• Case 1 reveals that there is significant spillage and

stranded power in the base system due to imports and

nonwind renewables. This finding is consistent with the

observations of Section II-A. We also observe that, as

expected, dispatch cost decreases initially as cheaper

wind power displaces thermal generation, but eventually

increases because of stranded power penalties. We also

see that the variance of the cost increases dramatically

as wind level is increased, indicating that the system

becomes more vulnerable to uncertain wind-power vari-

ations.

• Case 2 reveals that positioning large data centers de-

creases system cost, even if locations are chosen arbi-

trarily and loads are inflexible. The reason is that the

loads put stranded power to work, reducing penalties and

moderately reducing system cost. We also observe that

while cost is decreased, the variance of the cost is not

improved (compared with Case 1).

• Case 3 reveals that collocating data centers at wind-farm

locations gives little benefit to system cost. The slight

benefit comes from wind power used to offset the data

center loads, but stranded power is increased. Case 3 also

reveals that collocation of data centers and wind farms

does not reduce carbon emissions. In fact, increasing ther-

mal generation (and thus emissions) because of increasing
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stranded power. We find system cost variance decreased

significantly compared with that of Cases 1 and 2. We

attribute this decrease to better utilization of stranded

power at data-center locations. This result thus highlights

that stranded power can affect system vulnerability.

• Case 4 reveals the benefits of dispatchable loads, strate-

gically positioned, can reduce power spillage from all

sources (imports, nonwind renewables, and wind), not

just wind (as in Case 3). Strategic positioning results

in decreased system cost and decreased use of thermal

generation (and thus emissions). We also find that cost

variance is dramatically reduced compared to all other

cases, indicating that the system can better manage wind-

power fluctuations. Case 4 also reveals that duty factors

of 60-80% be achieved for data centers at high wind

penetration levels. This result occurs even if loads can

be adjusted at no cost. Consequently, there is a natural

economic incentive for data-center owners to provide

flexibility. The incentives are provided by better stranded

power utilization.
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Fig. 6. Dispatch cost at different wind levels (Case 1).

A. Base System

We first analyze the impact of increasing wind levels in

Case 1. Figure 6 shows that the average daily dispatch cost

decreases below a 5% wind level, because of the use of cheap

wind power. As wind levels increase, however, the dispatch

cost is increased by 26% ($2.1 MUSD/day) relative to the

system at 0% wind level. This increase is a combined effect

of using more thermal generation to account for wind power

variability and penalties induced by power spillage. Moreover,

the system cost becomes more variable as we increase wind

levels. In particular, the standard deviation is $5.2 MUSD/day

at a 50% wind level and $0.7 MUSD/day at a 5% wind level.

This variability indicates that the system cost becomes more

vulnerable.

Figure 7a shows daily average power and spillage by

generation source. As wind penetration is increased form 0%

to 50%, the thermal generation decreases by 48% (from 349

to 182 GWh). To absorb the variability of the wind, the total
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Fig. 7. Absorbed power, spillage, and total supply for increasing wind level
(Case 1).

supply increases by 21% (from 689 to 839 GWh), despite no

increase in load. Consequently at 50% wind penetration level,

23% of generation is spilled (not absorbed into the system).

This result reflects the difficulty in achieving high RPS because

of wind variability as despite this overproduction, the daily

load shedding is still 8 GWh.

Figure 7b shows daily average power by LMP value (price)

and spillages. Recall that stranded power is the sum of spillage

and power absorbed into the system at negative price (LMP≤
0), as defined in (11). We observe that as wind levels increase,

both spillage and stranded power increase. Stranded power

increases from 60% at a 0% wind level to 83% at a 50%

wind level. While the total economic return for a generator

may not be reflected in LMP alone, we note that the amount

of power absorbed at positive price (profitable power) does

not increase after a 15% wind level (see Figure 10b).

B. Adding Data Centers

Figure 8 compares dispatch cost for all cases. We note

that the dispatch cost of the base system is decreased in all

cases. The dispatch costs of the base system are decreased

by Cases 2 and 3, respectively, by less than 5% at 0% wind

level and by less than 13% at a 50% wind level. These results

indicate that adding data centers has a beneficial effect and

that this value increases as more stranded power is injected

into the system. Case 4 reduces dispatch cost dramatically. A

relative reduction of 98% is observed at 0% wind level and

a relative reduction of 49% is observed at 50% wind level

(compared with Case 1). As seen in Table II, the dramatic

decrease in cost is due to minimization of spillage (penalized

at large values). At a 0% wind level, in particular, dispatchable

loads fully eliminate spillages. In Cases 2 and 3 we can see

reductions in spillages, but these are much smaller than those

observed in Case 4. In particular, we note that optimally

placed dispatchable loads (Case 4) favor spillage reductions

of nonwind renewable supply over wind supply. This result
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TABLE II
THERMAL SUPPLY AND SPILLAGES AT DIFFERENT WIND LEVELS (GWH)

Wind Thermal Wind Import Renewable
Level RPS Supply Spillage Spillage Spillage

Case 1 0% 22% 349 0 21 18
5% 25% 325 8 19 18

15% 32% 276 25 19 18
30% 41% 221 66 20 18
50% 47% 182 154 21 18

Case 2 0% 22% 439 0 14 18
5% 25% 413 6 12 18

15% 33% 361 19 12 18
30% 43% 292 48 12 18
50% 51% 238 122 13 18

Case 3 0% 22% 374 8 11 17
5% 25% 355 17 11 17

15% 32% 315 39 11 17
30% 40% 272 86 11 17
50% 45% 237 176 11 17

Case 4 0% 24% 358 0 0 0
5% 28% 362 2 9 5

15% 36% 309 14 11 7
30% 45% 255 49 11 7
50% 52% 220 130 11 8
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Fig. 8. Dispatch cost at different wind levels for Cases 1, 2, 3, and 4.

supports the conclusion that dispatchable loads, well placed,

can provide much greater benefits for the power grid. The

reason is that optimal placement allows them to eliminate

spillages from a variety of generators in types and locations.

In Figure 8 we observe that significant value is obtained in

Case 4 at all wind levels; with benefits as great at 40%. At low

wind penetration, the dispatchable loads eliminate essentially

all spillage, dramatically reducing associated penalties. As the

wind penetration level increases, the gap with respect to the

base system is reduced. The decreased benefit is due to the

large amounts of spillage that are introduced at high wind

levels and that cannot be fully eliminated even with optimally

located dispatchable loads. This situation is observed in Table

II where wind power spillage increases proportionally to the

wind level. Fully eliminating spillage would require additional

data centers.

A surprising result is that the system cost variance is dra-

matically reduced with dispatchable loads. Figure 9 illustrates

this. In particular, the standard deviation for Case 4 is $0.1
MUSD/day at a 5% wind level and $3.6 MUSD/day at a 50%
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Fig. 9. Standard deviation of dispatch costs at different wind levels for Cases
1, 2, 3, and 4.
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Fig. 10. Wind supply by LMP and spillage.

wind level. We recall that the standard deviations for Case 1

are $0.7 MUSD/day at a 5% wind level and $5.2 MUSD/day

at a 50% wind level. For Case 2 the standard deviation is

$0.6 and $5 MUSD/day at 5% wind level and 50% wind level,

respectively. For Case 3 the standard deviation is $0.6 and $4.1
MUSD/day at 5% wind level and 50% wind level, respectively.

For Case 4 we also note that variances are negligible for wind

levels below 10% and remain small for wind levels below

20%. In contrast, the variances for Cases 1, 2, and 3 quickly

increase with the wind level. The reduction in cost variance is

the result of additional system flexibility.

C. Impact on Wind Generators

Of particular interest are the generation, spillage, uneco-

nomic and economic generation of wind power as the wind

penetration level increases. Figure 10 shows the growing wind

supply, what fraction is spillage, and what fraction is absorbed

on both uneconomic and economic terms. For brevity we

show results for only Case 1 and Case 4. Adding dispatchable

loads obtains significant value and decreases wind spillage

significantly, to zero at low wind penetration and by more than

15% at high penetration. However, there is a complementary
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Fig. 11. Duty factors and total dispatched load for data centers in Case 4.

increase in the uneconomic power accepted by the grid, so the

total stranded power remains large.

D. Data-Center Duty Factors

Figure 11 shows the daily dispatchable load served for all

data centers and the corresponding duty factor. We recall that

the total load capacity of the 20 dispatchable loads is 4 GW,

which consumes 96 GWh a day. We can see that a duty

factor of 45% is achieved at 0% wind level (duty factor is an

average over scenarios and over time). This indicates that the

dispatchable loads are used to decrease spillages of nonwind

renewables and imports but the data center loads are far from

fully served. The duty factor rapidly increases to 60% at a 5%

wind level (indicating that stranded wind power adds value

to the loads). The duty factor goes up to 75% at 50% wind

penetration level and the trend is maintained (i.e., it does not

settle). We have also found that the variance of the duty factors

does not increase for wind levels higher than 15%. We note

that unserved loads for flexible data centers are not penalized

in Case 4 and that high duty factors can still be achieved.

Consequently, we conclude that stranded power provides a

natural economic incentive for flexible computing.

V. DISCUSSION AND RELATED WORK

The computational analysis in Section IV illustrates that

flexibility imposed by adding dispatchable loads can signif-

icantly reduce power spillage and dispatch cost by making

better use of the stranded power. The flexibility cannot be

achieved simply by consuming stranded power for nondis-

patchable data centers, which causes more thermal power

generation and increasing carbon emissions. We acknowledge

that the absolute value of adding dispatchable loads may vary

depending on many factors including network topology (i.e.,

transmission line expansion), generation ramping capacities,

and generation fuel mix. However, we note that changes in

such factors are followed by significant capital expenses [34],

whereas the dispatchable loads can be obtained by making the

existing computing facilities flexibly operating.
A larger set of drivers is increasing volatility and scheduling

challenges for the power grid. For example, San Diego’s

100% renewable portfolio standard goal with a strategy based

primarily on solar energy requires energy matching across

temporal shifts of 8-16 hours; storage is likely a key element.

Netmetering, widely practiced in residential solar systems, re-

duces demand during daylight, causing power grid demand to

be anticorrelated with the availability of solar grid generation.

Another example we explored, the addition of renewables on

site with large loads such as industrial facilities, and army

bases, also creates countervarying load with renewable grid

generation. New sources of load such as electric vehicles

will cause additional demand at times and locations whose

predictability are not well understood.

Our results and those obtained from other systems such

as batteries, buildings, and aluminum manufacturing facilities

indicate that dispatchable loads provide more flexibility than

do traditional models based on load shifting and demand

response [35]–[37]. Such flexibility becomes relevant as we

increase intermittency of renewable power, which patterns and

peaks shift over time. Since small and large computing jobs

can be scheduled in realtime, a dispatchable load of a data

center can also be exploited by ISOs to provide frequency

regulation at faster time scales [38]. A dispatchable load from

a data center also provides a scalable alternative to battery

systems. The reason is that dispatchable loads are linked to a

primary service that makes profit (e.g., computing service) and

therefore there is a natural economic driver driving investment

in new installations. A battery system, on the other hand, is

installed with the sole intention of being used as an ancillary

service. This distinction is important because as electricity

prices flatten out, less incentives will exist for battery installa-

tions while the need for data centers and computing capacity

is expected to persist.

Our results and those of many others [21], [22], [39]

highlight the challenges facing the power grid at a high level of

wind penetration. For example, at 50% penetration, our studies

show that 23% of the grid generation is wasted. Further, the

study of stranded power suggests that the economics of the

power grid are even more challenging at high RPS levels.

At 50% wind penetration, we find that 83% of the power

generation is uneconomic.3

Numerous efforts exploit renewable power for data centers

(Microsoft, Facebook, and Amazon all buy renewable power

through long-term purchase contracts; see [40]). Many re-

searchers study the addition of renewable generators to data

centers [13], [14], [41], matching our Case 3, but not Case 4,

dispatchable loads, and thus these efforts will not deliver the

grid benefits our results describe.

Our dispatchable data centers provide large-scale volatile

computing resources, a significant departure from traditional

data centers with nearly 100% availability and small-scale

volatile resources such as in peer-to-peer [26], [42]–[44]. Ef-

fective exploitation of volatile resources requires new models

of computing and resource management.

Numerous opportunities do exist for stranded power to

either create economic benefit or reduce carbon emission.

Examples include direct monetization through bitcoin mining,

3Based on the grid payments, setting externalities such as Production Tax
Credits.
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hydrogen generation, water desalination, and carbon recap-

ture.

VI. SUMMARY AND FUTURE WORK

We examined the grid impact of adding data centers across

a range of wind penetration levels. Our results show that

increased wind penetration levels lead to high levels of spillage

and uneconomic absorbed generation, which together we call

stranded power. Significant at even moderate levels of wind

penetration, these numbers grow even higher at high levels

of wind penetration (83% at 50% penetration). In short, the

quantity of stranded power in today’s grid is large and grows

rapidly with RPS levels.

Two of our scenarios added data centers in conventional

ways, first alone and second with each data center paired with

a wind power plant of equal average generation. However,

our third scenario, adding data centers as a dispatchable load

that the grid could turn on or off based on grid benefits,

gave surprising results. Spillage was dramatically reduced, and

average power cost also dramatically decreased; as much as

44%. Closer examination shows that such dispatchable loads

enable better utilization of wind generation and significantly

more efficient grid management. Our studies show that these

dispatchable loads achieve duty factors as high as 70 ∼ 80%,

making them usable for a broad array of applications, includ-

ing one we are considering, intermittent computing.

Directions for future work include exploring the impact of

transmission changes and the types of computing services that

might be feasible.

APPENDIX A

NOTATION

Sets:

D Set of demand loads

Dn Set of demand loads at bus n
G Set of all generators

Gn Set of all generators at bus n
I Set of import points

In Set of import points at bus n
L Set of transmission lines

L+
n Set of transmission lines to bus n

L−
n Set of transmission lines from bus n

N Set of buses

R Set of nonwind renewable generators

Rn Set of nonwind renewable generators at bus n
S Set of wind production scenarios

T Set of time periods

W Set of wind-farm locations

Parameters:

Bl Susceptance of transmission line l
Ci Generation cost of generator i [$/MWh]
Cd

j Load shedding penalty at load j [$/MWh]
Cw

i Spillage penalty at wind farm i [$/MWh]
Cm

i Spillage penalty at import point i [$/MWh]
Cr

i Spillage penalty at nonwind renewable i [$/MWh]
Cs

n Value of lost dispatchable load at bus n [$/MWh]
Djt Demand load of consumer j at time t [MWh]

Fmax
l Maximum power flow of transmission line l [MW ]

K Maximum number of dispatchable loads

Mit Power production of import i at time t [MWh]
Pmax
i Maximum power output of generator i [MWh]

Rit Power production of nonwind renewable generator

i at time t [MWh]
RUi Ramp-up limit of generator i [MW ]
RDi Ramp-down limit of generator i [MW ]
U Dispatchable load capacity [MW ]
Wwt Wind power generation from generator w at time t

[MWh]
Wwts Wind power generation from generator w at time t

for scenario s [MWh]
πs Probability of wind production scenario s
Θmin

nt Minimum phase angle at bus n at time t [degree]
Θmax

nt Maximum phase angle at bus n at time t [degree]

Decision variables:

djt Load shedding at load j at time t [MWh]
djts Load shedding at load j at time t for scenario s

[MWh]
flt Power flow of transmission line l at time t [MWh]
flts Power flow of transmission line l at time t for

scenario s [MWh]
mit Power spillage at import point i at time t [MWh]
mits Power spillage at import point i at time t for

scenario s [MWh]
pit Power output of generator i at time t [MWh]
pits Power output of generator i at time t for scenario

s [MWh]
rit Power spillage at nonwind renewable i at time t

[MWh]
rits Power spillage at nonwind renewable i at time t for

scenario s [MWh]
unts Dispatchable load served at bus n at time t for

scenario s [MWh]
wit Power spillage at wind farm i at time t [MWh]
wits Power spillage at wind farm i at time t for scenario

s [MWh]
xn Number of dispatchable loads installed at bus n

[degree]
θnt Phase angle at bus n at time t [degree]
θnts Phase angle at bus n at time t for scenario s

[degree]
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